• <menu id="4sgqq"><strong id="4sgqq"></strong></menu>
    <menu id="4sgqq"></menu><nav id="4sgqq"></nav>
  • <menu id="4sgqq"><tt id="4sgqq"></tt></menu>
    <menu id="4sgqq"><u id="4sgqq"></u></menu>
    <menu id="4sgqq"></menu>
    <xmp id="4sgqq"><nav id="4sgqq"></nav>
  • <nav id="4sgqq"><code id="4sgqq"></code></nav>
    <menu id="4sgqq"></menu>
    歡迎進入洛陽匯智測控技術有限公司官方網站!
    熱門關鍵詞:
    洛陽匯智測控 · 新聞動態
    行業資訊 您的當前位置:首頁 > 新聞動態 > 行業資訊

    激光應用-半導體激光體

    更新時間:2021-07-16 09:33:04點擊次數:335次
    激光技術的原理是:當光或電流的能量撞擊某些晶體或原子等易受激發的物質,使其原子的電子達到受激發的高能量狀態,當這些電子要回復到平靜的低能量狀態時,原子就會射出光子,以放出多余的能量;而接著,這些被放出的光子又會撞擊其它原子,激發更多的原子產生光子,引發一連串的“連鎖反應”,并且都朝同一個方前進,形成強烈而且集中朝向某個方向的光。這種光就叫做激光。激光幾乎是一種單色光波,頻率范圍極窄,又可在一個狹小...

    激光技術的原理是:當光或電流的能量撞擊某些晶體或原子等易受激發的物質,使其原子的電子達到受激發的高能量狀態,當這些電子要回復到平靜的低能量狀態時,原子就會射出光子,以放出多余的能量;而接著,這些被放出的光子又會撞擊其它原子,激發更多的原子產生光子,引發一連串的“連鎖反應”,并且都朝同一個方前進,形成強烈而且集中朝向某個方向的光。這種光就叫做激光。激光幾乎是一種單色光波,頻率范圍極窄,又可在一個狹小的方向內集中高能量,因此利用聚焦后的激光束可以對各種材料進行打孔。激光因為擁有這種特性,所以擁有廣泛的應用。

    半導體激光器是用半導體材料作為工作物質的一類激光器,由于物質結構上的差異,產生激光的具體過程比較特殊。常用材料有砷化鎵(GaAs)、硫化鎘(CdS)、磷化銦(InP)、硫化鋅(ZnS)等。激勵方式有電注入、電子束激勵和光泵浦三種形式。自1962年世界上第一只半導體激光器是問世以來,經過幾十年來的研究,半導體激光器得到了驚人的發展,它的波長從紅外、紅光到藍綠光,被蓋范圍逐漸擴大,各項性能參數也有了很大的提高!半導體激光器具有體積小、效率高等優點,因此可廣泛應用于激光通信、印刷制版、光信息處理等方面。

    半導體激光器是一種相干輻射光源,要使它能產生激光,必須具備三個基本條件:

    1.增益條件:建立起激射媒質(有源區)內載流子的反轉分布,在半導體中代表電子能量的是由一系列接近于連續的能級所組成的能帶,因此在半導體中要實現粒子數反轉,必須在兩個能帶區域之間,處在高能態導帶底的電子數比處在低能態價帶頂的空穴數大很多,這靠給同質結或異質結加正向偏壓,向有源層內注人必要的載流子來實現。將電子從能量較低的價帶激發到能量較高的導帶中去。當處于粒子數反轉狀態的大量電子與空穴復合時,便產生受激發射作用。

    2.要實際獲得相干受激輻射,必須使受激輻射在光學諧振腔內得到多次反饋而形成激光振蕩,激光器的諧振腔是由半導體晶體的自然解理面作為反射鏡形成的,通常在不出光的那一端鍍上高反多層介質膜,而出光面鍍上減反膜。對F—p腔(法布里一珀羅腔)半導體激光器可以很方便地利用晶體的與P—n結平面相垂直的自然解理面一[110]面構成F—P腔。

    3.為了形成穩定振蕩,激光媒質必須能提供足夠大的增益,以彌補諧振腔引起的光損耗及從腔面的激光輸出等引起的損耗,不斷增加腔內的光場。這就必須要有足夠強的電流注入,即有足夠的粒子數反轉,粒子數反轉程度越高,得到的增益就越大,即要求必須滿足一定的電流閥值條件。當激光器達到閥值時,具有特定波長的光就能在腔內諧振并被放大,最后形成激光而連續地輸出。

    可見在半導體激光器中,電子和空穴的偶極子躍遷是基本的光發射和光放大過程。對于新型半導體激光器而言,人們目前公認量子阱是半導體激光器發展的根本動力。量子線和量子點能否充分利用量子效應的課題已延至本世紀,科學家們已嘗試用自組織結構在各種材料中制作量子點,而GaInN量子點已用于半導體激光器。另外,科學家也已經做出了另一類受激輻射過程的量子級聯激光器,這種受激輻射基于從半導體導帶的一個次能級到同一能帶更低一級狀態的躍遷,由于只有導帶中的電子參與這種過程,因此它是單極性器件。

    一、半導體激光器在激光光譜學中的應用

    激光光譜是以激光為光源的光譜技術,主要用于分子光譜、等離子物理、高階諧波產生的科學應用及大氣污染的監測和癌癥的診斷等。而選用半導體激光器作為激光光譜學的光源中有較多優勢,它體積小,輸入能量低,壽命長,可協調性強且價格低廉。例如圖即為“SPECDILASV—763—OXY"VCSEL所探測的氧氣的吸收光譜(半導體激光器的工作溫度為Top=10,Iset=4.6mA,加32Hz,10.6mV的鋸齒波,256次平均)。可以看出,通過改變工作電流很容易地得到氧氣的兩個吸收峰,無模式跳躍。

    二、在固化成型技術中的應用

    光固化成型法(Stereo lithography Appearance,簡稱SLA)是最早出現的快速原型制造工藝,由于它成型過程自動化程度高、制作原型表面質量好、尺寸精度較高且能夠實現比較精細的尺寸成型,在單件小批量精密鑄造、概念設計的交流、產品模型、快速工模具及直接面向產品的模具等諸多方面廣泛應用于航空、汽車、電器、消費品以及醫療等行業得到了廣泛應用。其成型原理如圖2所示,用特定波長與強度的激光聚焦到光固化材料表面,使之由點到線,由線到面順序凝固,完成一個層面的繪圖作業,然后升降臺在垂直方向移動一個層片的高度,再固化另一個層面.這樣層層疊加直至構成一個三維實體。而紫外半導體激光器技術的發展,為SLA提供了最好的光源,在電光效率、成本、體積、壽命和可靠性等指標上堪稱最優,在光譜、譜線寬度、功率等性能方面也完全符合其工藝要求,因此現在進行這種新型光源的研究已成為現實。

    三、在軍事領域中的應用

    伴隨激光技術的日趨成熟,半導體激光器的應用范圍覆蓋了整個光電子學領域,它在軍事領域也得到了廣泛應用,成為我國國防事業不可或缺的中堅力量。如半導體激光雷達,主要是波長820~850 nm 的LD 及列陣。新型半導體激光雷達與被動探測(紅外系統)相結合,具有多種成像功能,包括強度成像、距離成像和速度成像等,具有先進的實時圖像處理功能,包括各種成像的綜合、圖像跟蹤和目標的自動識別等。此外,半導體激光器也在激光測距、激光模擬武器、激光警戒、激光制導跟蹤、引燃引爆等方面獲得了廣泛的應用。

    四、在醫療領域中的應用

    半導體激光器體積小、成本低、壽命長、波長可選擇、輸出功率穩定等優點,特別適用于醫療設備,其臨床應用幾乎覆蓋了所有其他類型的激光器的應用范圍。如低功率810nm近紅外半導體激光器,由于該波長的激光穿透能力強,屈光間質對它吸收最少,光斑直徑可調范圍大 ,是眼科中最常用的熱源,可用于治療青光眼、硅油注入術后難治性高眼壓以及視網膜的光凝和固定等;810nm半導體激光起能夠很好被毛囊內黑色素吸收,產生熱效應,破壞毛囊,完成脫毛的效果;大功率半導體激光器也廣泛應用于腫瘤的激光切割、凝固手術。這些都為人類的健康進一步提供了保障。

    五、在通信中的應用

    半導體激光器在信息的獲取,傳輸,存儲和處理以及顯示中也得到廣泛應用。21世紀,隨著光纖通信的發展,半導體激光器光作為光纖通信系統中的光源,是關鍵元件,是整個系統的核心部分,短距離的光纖通信采用單模光纖和130~150nm波長的半導體激光器,空間通信用列陣半導體激光器。全球光纖通信市場前景廣闊,因此,半導體激光器的市場前景也是非常好的。

    六、在激光打印和印刷中的應用

    激光打印機脫胎于80年代末的激光照排技術,流行于90年代中期。它是將激光掃描技術和電子照相技術相結合的打印輸出設備。較其他打印設備,激光打印機有打印速度快、成像質量高等優點。10-100nm的高功率半導體激光器主要用于高速激光打印機。一般為網絡化辦公打印機,包括新出現的彩色激光打印機(打印速度為12-35p/min)。用激光把資料直接寫在印刷板上正成為印刷技術工業的一種發展趨勢,不僅節省很多中間環節、降低成本,而且加快了速度,因此此種應用預計會穩定增長,如采用1W二極管激光器64元陣列、用光纖藕合配以透鏡系統。目前多數激光、計算機、印刷系統采用鹵素銀或光敏有機物的光敏材料。杜邦公司、柯達公司等均在致力于開發此類熱敏材料,采用半導體激光器日益增多,此項應用市場也呈蓬勃發展。

    電話:
    Notice: Undefined variable: cfg_dy in /www/wwwroot/huige.com.cn/footer.php on line 123

    91彩站联盟